MATH 579 Exam 9 Solutions

1. Let a_{n} denote the number of ways to pay n cents using pennies, nickels, dimes and/or quarters. For example, $a_{5}=2$ (either five pennies or one nickel). Find the generating function for a_{n}.

$$
\begin{aligned}
& \text { Let } A(x)=\sum_{n \geq 0} a_{n} x^{n} \text {. We have } A(x)=\left(1+x+x^{2}+\cdots\right)\left(1+x^{5}+x^{10}+\right. \\
& \cdots)\left(1+x^{10}+x^{20}+\cdots\right)\left(1+x^{25}+x^{50}+\cdots\right)=\frac{1}{1-x} \frac{1}{1-x^{5}} \frac{1}{1-x^{10}} \frac{1}{1-x^{25}} .
\end{aligned}
$$

2. Let a_{n} be the number of subsets of $[n]$ in which the difference between any two elements is at least four. Find the generating function for a_{n}.

Consider a valid subset. If it does not contain n, then it is in fact a valid subset from $[n-1]$; on the other hand if it does contain n then the rest is a valid subset from $[n-4]$; Hence $a_{n}=a_{n-1}+a_{n-4}$. Also we have $a_{0}=1, a_{1}=$ $2, a_{2}=3, a_{3}=4$ (in all these base cases a valid subset can contain at most one element). Multiplying both sides of the recurrence by x^{n} and summing over all $n \geq 4$ we get $\sum_{n \geq 4} a_{n} x^{n}=x \sum_{n \geq 4} a_{n-1} x^{n-1}+x^{4} \sum_{n \geq 4} a_{n-4} x^{n-4}=$ $x \sum_{n \geq 3} a_{n} x^{n}+x^{4} \sum_{n \geq 0} a_{n} x^{n}$. Hence $A(x)-1-2 x-3 x^{2}-4 x^{3}=x(A(x)-$ $\left.1-2 x-3 x^{2}\right)+x^{4} A(x)$. Solving, we get $A(x)=\frac{1+x+x^{2}+x^{3}}{1-x-x^{4}}$.
3. Use generating functions to solve the recurrence $a_{0}=1, a_{n}=3 a_{n-1}+2^{n-1}$.

Multiplying both sides by x^{n} and summing over all $n \geq 1$ (note: not $n \geq 0$ since a_{-1} is undefined) we get $\sum_{n \geq 1} a_{n} x^{n}=3 x \sum_{n \geq 1} a_{n-1} x^{n-1}+$ $x \sum_{n \geq 1} 2^{n-1} x^{n-1}=3 x \sum_{n \geq 0} a_{n} x^{n}+x \sum_{n \geq 0} 2^{n} x^{n}$. Hence $A(x)-1=3 x A(x)+$ $\frac{x}{1-2 x}$. Solving, we get $A(x)=\frac{1-x}{(1-2 x)(1-3 x)}=\frac{a}{1-2 x}+\frac{b}{1-3 x}=a \sum_{n \geq 0} 2^{n} x^{n}+$ $b \sum_{n \geq 0} 3^{n} x^{n}$. Hence $a_{n}=a 2^{n}+b 3^{n}$. It remains to solve the partial fractions: $1-x=a(1-3 x)+b(1-2 x)$. Substituting $x=1 / 2$, we get $a=-1$; substituting $x=1 / 3$, we get $b=2$. Hence $a_{n}=-2^{n}+2 \cdot 3^{n}$.
4. A permutation is called indecomposable if its one-line notation cannot be split into two parts such that every number in the first part is smaller than every number in the second part. Let a_{n} denote the number of indecomposable permutations of length n, with $a_{0}=0$. Find the generating function for a_{n}. You may use the generating function $B(x)=\sum_{n \geq 0} n!x^{n}$, the generating function of all permutations.

The one-line notation of every permutation is one or more indecomposable permutations, one after the other. In other words, we get a permutation by breaking up $[n]$ into one or more nonempty blocks, then ordering each of those blocks indecomposably. Thus $B(x)=\frac{1}{1-A(x)}$. Solving, we get $A(x)=$ $1-\frac{1}{B(x)}$.
5. Find the generating function for $a_{n}=n^{3}$.

Solution 1: Start with $\frac{x}{(1-x)^{2}}=B(x)=\sum_{n \geq 0} n x^{n} . B^{\prime}(x)=\sum_{n \geq 0} n^{2} x^{n-1}$, and $x B^{\prime}(x)=\sum_{n \geq 0} n^{2} x^{n}$. Taking derivatives again, we have $\left(x B^{\prime}(x)\right)^{\prime}=$ $\sum_{n \geq 0} n^{3} x^{n-1}$ and $x\left(x B^{\prime}(x)\right)^{\prime}=\sum_{n \geq 0} n^{3} x^{n}=A(x)$. Using the quotient rule
and simplifying, we have $B^{\prime}(x)=\frac{1+x}{(1-x)^{3}}$ and $x B^{\prime}(x)=\frac{x+x^{2}}{(1-x)^{3}} .\left(x B^{\prime}(x)\right)^{\prime}=$ $\frac{x^{2}+4 x+1}{(1-x)^{4}}$; hence $A(x)=\frac{x^{3}+4 x^{2}+x}{(1-x)^{4}}$.

Solution 2: $n^{3}=S(3,3)(n)_{3}+S(3,2)(n)_{2}+S(3,1)(n)_{1}+S(3,0)(n)_{0}=$ $(n)_{3}+3(n)_{2}+1(n)_{1}+0=6\binom{n}{3}+6\binom{n}{2}+\binom{n}{1}$. Note: this only holds for $n>0$, since $S(0,0)=1$, so instead of $A(x)=\sum_{n \geq 0} a_{n} x^{n}$, we will consider $B(x)=\sum_{n \geq 1} a_{n} x^{n}$. As it happens, $a_{0}=0$, so $A(x)=B(x)$. Hence $A(x)=$ $\sum_{n \geq 1} n^{3} x^{n}=\sum_{n \geq 1} 6\binom{n}{1}+6\binom{n}{2}+\binom{n}{1} x^{n}=6 \sum_{n \geq 1}\binom{n}{3} x^{n}+6 \sum_{n \geq 1}\binom{n}{2} x^{n}+$ $\sum_{n \geq 1}\binom{n}{1} x^{n}$. Now $\frac{1}{(1-x)^{4}}=\sum_{n \geq 0}\binom{n+3}{3} x^{n}$, so $\frac{x^{3}}{(1-x)^{4}}=\sum_{n \geq 0}\binom{n+3}{3} x^{n+3}=$ $\sum_{n \geq 3}\binom{n}{3} x^{n}$. Similarly, $\frac{1}{(1-x)^{3}}=\sum_{n \geq 0}\binom{n+2}{2} x^{n}$, so $\frac{x^{2}}{(1-x)^{3}}=\sum_{n \geq 0}\binom{n+2}{2} x^{n+2}=$ $\sum_{n \geq 2}\binom{n}{3} x^{n}$. Hence $A(x)=6\left(0+0+\frac{x^{3}}{(1-x)^{4}}\right)+6\left(0+\frac{x^{2}}{(1-x)^{3}}\right)+\frac{x}{(1-x)^{2}}=$ $\frac{x^{3}+4 x^{2}+x}{(1-x)^{4}}$.
6. Let a_{n} denote the number of ways to place n identical nonattacking rooks on an $n \times n$ board, with no rooks on the diagonal (such as on the previous exams). Prove that this equals $D(n)$, the number of derangements of $[n]$. Use this to calculate a_{6}.

We establish a bijection between the two sets. Given a valid rook placement, suppose a rook is in row i and column j. We create a directed graph by forming an edge between vertex i and vertex j, for every rook in the placement. Note that each row and column of the valid placement has exactly one rook; hence every vertex in the directed graph has exactly one in-edge and exactly one out-edge. Hence this is the directed graph representation of a permutation. Furthermore, the diagonal is forbidden in the rook placement, hence no edge leads from a vertex back to itself, hence this permutation is in fact a derangement. On the other hand, given a derangement, we take each column of the two-line notation as coordinates for a rook. To be a valid rook placement, no two rooks can be in the same row or column (holds since this is a permutation), and no rook may be on the diagonal (holds since this is a derangement).

Now, $a_{1}=0, a_{2}=1$, and we use the recursive formula $a_{n+1}=n\left(a_{n}+a_{n-1}\right)$, that we proved for derangements. Hence $a_{3}=2(1+0)=2, a_{4}=3(2+1)=$ $9, a_{5}=4(9+2)=44, a_{6}=5(44+9)=265$.

Exam results: High score $=88$, Median score $=73$, Low score $=50$ (before any extra credit)

Reminder: The final exam will be in our classroom, 10:30-12:30 on Tuesday, May 19. As usual, this will be open book, open notes, calculators required.

